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SUMMARY 

Correlation equations for statistically homogeneous fluctuations of ve- 
locity and temperature at two points in an infinite uniform shear flow are de- 
rived with allowance for a temperature gradient in an arbitrary direction in a 
plane normal to the flow direction. The initially excited isotropic turbulence 
decays and becomes anisotropic with time. After Fourier transformations are 
introduced, the resulting spectral equations are solved for the case of weak 
turbulence wherein triple correlations are neglected compared with double cor- 
relations. Spectra of turbulent heat transfer and temperature fluctuation are 
calculated. For large nondimensional velocity gradients, the thermal eddy dif- 
fusivity in the direction normal to the velocity gradient is much larger than 
that in the direction of the velocity gradient, The thermal eddy diffusivity 
in the velocity gradient direction tends to equal the momentum eddy diffusivity 
at large velocity gradients, 

INTRODUCmON 

Phenomenological theories of turbulence, which are reviewed in reference 1, 
have recently received support from statistical turbulence theory, In a mi- 
form shear flow with decaying turbulence, a tendency of the ratio of eddy dif- 
fusivities for heat and momentum to approach unity was found for conditions 
that correspond roughly to steady channel flow (ref, 2). Developments of this 
nature do not form a basis for supplanting phenomenological theories, which are 
the only practical means of organizing quantities of experimental evidence. 
Rather, statistlcal theories further the understanding of turbulence and may, 
in some instances, point the way for new extensions of the phenomenological 
theories when no experimental evidence is available, 

A uniform shear flow is described by a constant gradient of mean velocity 
in a direction normal to the flow direction. No boundaries are present, 
Transient turbulence, which is spatially homogeneous, is initially established, 
for instance, by a wire screen, and the turbulence is later studied when it is 



weak enough for the triple correlations of velocity or temperature fluctuations 
to be neglected. 

Early statistical investigations of turbulent heat transfer were concerned 
with the isotropic turbulence that arises in the absence of a mean velocity 
gradient (refs, 3 and 4). 
correlations were first presented in reference 5, Additional studies of heat 
transfer, pressure fluctuations, and velocity correlations were accomplished in 
references 2, 6, and 7, In the present effort, these studies are extended to 
include the effects of a temperature gradient with components not only in the 
direction of the velocity gradient (the subject of ref, 2) but also in the di- 
rection normal to both the velocity vector and the velocity gradient. A simi- 
lar arrangement of vectors occurs in a tube flow with circumferential varia- 
tions in heat transfer, In the following development, temperature gradient ef- 
fects are shown to be separable into components; consequently, the results of 
the present investigation supplement those of reference 2. 

For shear flows, numerical values of the velocity 

Several features of stronger turbulence are present in weak turbulent 
shear flows, as shown in reference 5, Transfer between eddies of different 
sizes is present, as is production of turbulence by the action of the mean ve- 
locity gradient. The decay of velocity and temperature fluctuations proceeds, 
however, despite the production effects since they are not strong enough to 
offset dissipation effects, 
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SYMBOLS 

transverse velocity gradient, dUl/dxz 

dimensionless transverse velocity gradient, (t - to)dUl/dx2 
transverse temperature gradients, aT/ax2 and aT/axg, respectively 

constant that depends on initial conditions 

arbitrary points 

Prandtl nuniber, v/a 

instantaneous pressure 

distance from P to P' 

distance vector from P to P' 

component of r 

average temperature 

instantaneous temperature 
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transfer term for temperature fluctuations obtained by integrating 
~1 a 8 / a K z  
sphere 

in eq. (25) over anmar coordinates of wave number 

time 

initial value of t 

average velocity component 

instantaneous velocity component 

fluctuating part of velocity component defined by eq, (4) 

space coordinate 

thermal diffusivity 

spectrum functions of or  TU^ defined by eq. (29) 

Fourier transform of TU! defined by eq. (15) 

Fourier transform of up' defined by eq. (16) 

spectrum function of 7 defined by eq. (30) 
Fourier transform of TT' defined by eq, (17) 

equals 1 for 

eddy diffusivity for momentum transfer defined by eq. (34a) 

eddy diffusivity for heat transfer defined by eqs, (34b) 

Fourier transfom'of ~ p '  defined by eq. (19) 

Fourier transform of p ~ '  defined by eq. (20) 

- - 
- 

J 

- 
i = j j  equals o for i f j 

- 
- 

spherical coordinate in wave number space 

wave number 

dimensionless wave number, v1l2(t - K 

wave number vector 

component of wave number vector 

kinematic viscosity 

duItuny variable 
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P density 

7 fluctuating part of temperature defined in eq. (3) 

' spherical coordinate in wave nwiber space 

'ij 1 J  

Subscripts : 

- 
Fourier transform of u.u! defined by eq. (18) 

1, J ,k values equaling 1, 2, or 3 and designating coordinate directions 

(2),(3) scalar quantities that arise from effects of aT/ax2 or aT/ax3 

Superscripts: 

( ' 1  point PI 

(3 average value 

dimensionless quantity ("1 

ANALY'TI CAL FORMUDITION 

The thermal energy equations at two points P and P1 can be written for 
constant properties as 

and 

where Zk and T" are the instantaneous velocity component and temperature, 
respectively. Cartesian components of the position vector 2 are designated 
by the subscript k, which takes on the values 1, 2, and 3. A repeated sub- 
script on a term implies a summation of three terms corresponding to the three 
values of the subscript. The symbols t and a represent time and thermal 
diff'usivity, respectively. A division of instantaneous quantities into steady 
and fluctuating components is accomplished by setting 

N 

T = T + T  (3) 

and 

fik = uk + Uk (4) 

These relations are substituted into equation (l), and the resulting equation 
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is averaged over a large number of systems that are macroscopically the same 
but have random fluctuating quantities that are spatially homogeneous in a 
statistical sense (ensemble average). The averaged equations are subtracted 
fromthe unaveraged ones with the result 

where the bar indicates an averaged quantity, The average of a fluctuating 
component is necessarily zero, At point PI, the equation corresponding to 
equation (5) can be visualized from equations (1) and (2). In a similar 
manner, the Navier-Stokes equations were treated in reference 5 to yield (at 
point I) * ) 

- 
32Uj 

( 6) 
auj au; auj% auj% 1 a p  a t + Y ; ; q + U 1 ;  q+.-q--.y=-- p y + v q x g  

- 
An equation for TU! is obtained by multiplying equation (5) by u! and equa- 

tion (6) by In the interest 
of brevity, the turbulence is assumed weak at this point in the analysis, so 
that the triple correlations that arise are neglected compared with the double 
correlations. None of the omitted triple correlations is different from that 
in reference 2, The averaged equation is 

J J 
7, adding, and averaging the resulting equation. 

where the independence of fluctuating quantities at one point from the position 
of the other point has been utilized in placing the quantities inside the 
spatial derivative s i p .  In homogeneous turbulence, (a/ax&)% = a/&, and 

(a/axk)xi, = -a/&, if z1 = ?i + 2. 
locity component and one velocity gradient dUl/dxZ, a simplifying rela- 
tion exists: 

In the present case of a single steady ve- 

a 3  a 3  
( u i - u  k) ~ = d U l r  ark ax2 2 ar, ( 8 )  

which reduces equation (7) to 
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where Elj = 1 for j = 1 and 0 for j # 1. 

tions (5) and (6) at P' and P yields 
A similar procedure applied to the equations corresponding to equa- 

and, likewise, equation (5) at P and the corresponding equation at P' yield 

An additional equation is obtained 'by applying a/ax; to equation (6) and 
noting the continuity equation &!/ax; = 0. This produces J 

Multiplying equation (12)  by IT, averaging, and introducing rj = xi - xj give 

Similarly, 
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Fourier transf o m  are introduced: 



-+ 
where 1 ~ 1  = K 
of an eddy size.  

i s  t h e  wave number, which can be in t e rp re t ed  as t h e  rec iproca l  

The Fourier transforms of equations ( 9 )  and (13) a r e  

and  

where dUl/dxZ and aT/axk a r e  constants. Equation (22) can be subtracted 
from equation ( 2 1 )  and ( can thus be eliminated from the  equations, A s i m i -  
l a r  procedure applied t o  equations (10) and (14 )  y ie lds  an equation of t h e  same 
form for y;. 

aT/axg # 0 i s  considered s o  t h a t  = rj. The symbols a = dUl/dx2, 
b = aTbx2, and 

I n  the  present  study, t he  case of r = 0, aT/axz # 0, and 

c = aT/axg a r e  introduced so  t h a t  t h e  f i n a l  equations become 

(23) 
ar2 ar2 
at - a K 1  a ~ ,  = - bT22 - cT23 + 

and 
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where equation (25) i s  the  Fourier transform of equation (ILL). 

SOLUTION OF SPECTRAL EQUATIONS 

I so t rop ic  turbulence and zero temperature f luc tua t ions  a re  assumed as 
in i t i a l  conditions, Expressions for 'p22 and 'p33 t h a t  s a t i s f y  these  i n i t i a l  
conditions have been reported i n  references 5 and 7. The l a t t e r  is 

where JO and t o  a re  constants t h a t  depend on t h e  i n i t i a l  conditions. 

I n  reference 7, t h e  so lu t ion  f o r  ~ 2 3  = ( ~ 3 2 ,  although nonzero, w a s  found 
~ 2 ~ 3 ,  which w a s  consis tent  with t h e  lack of a ve- 
- 

t o  produce a zero value of 
l o c i t y  gradient in t h e  x2,x3-plane. 
t i o n  have been solved f o r  t h e  e f f e c t s  of 
t a in ing  cp22 and (The l i n e a r i t y  of t h e  equations 7 permits t he  addi t ion  
of solut ions.)  Zero contributions t o  7u2 and Tu3 a r e  obtained from t h e  d i -  
r e c t  e f f e c t s  of 
en te r s  equation (24) in the  f i f t h  term. This contr ibut ion can be t raced  t o  t h e  
expression of t h e  pressure e f f e c t  5 i n  terms - of r 2  i n  equation ( 2 2 ) .  The 
remaining port ion of y-2 t h a t  contributes t o  7u2 i s  the  same as t h a t  re -  
ported i n  reference 2; it i s  not repeated herein. I n  the  following solut ions 

equations (24) and (25), o n l y t h o s e  expressions t h a t  contr ibute  t o  
T~ a r e  shown. 

Equations (23)  and (24) of t h i s  invest iga-  
923 by omission of t h e  terms con- 

- 
~ 2 3 ;  however, an ind i r ec t  e f f e c t  t h a t  does contr ibute  t o  'tug 

"ug or 

- For a Prandt l  number equal t o  1 t h e  Fourier transform of 7u3 i s  
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(27a) For a Prandtl number not equal t o  1, r3 takes the form 
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These expressions f o r  y2 and y3 v e r i f y  t h e  f a c t  t h a t  t he  turbulen t  - - 
heat - t ransfer  components ‘tu2 and  TU^ a r i s e  from temperature gradient  com- 
ponents i n  t h e  respec t ive  d i rec t ions  dT/ax2 and aT/axg. 

The transform of the  port ion of ‘t2 t h a t  a r i s e s  from aT/axg is ,  for  a 
Frandt l  number equal t o  1, 

- 

The other port ion 6(2)  t h a t  i s  a r e s u l t  of aT/ax2 i s  the  same as t h a t  re-  
ported i n  reference 2. 

~ The convenience of i n t e rp re t ing  funct ions of K ins tead  of f’unctions of 
K Following t h a t  suggestion, the  in tegra t ions  
t h a t  lead to ~2 and ‘tu3 a r e  accomplished i n  two s teps ,  the  f i r s t  of which 

involves in t eg ra t ing  over t he  angular coordinates of a wave number sphere: 

w a s  pointed out i n  reference 8. - - 
( 3)  

and 

( K , ( P , ~ ) K ~  s i n  0 d(P de ( 30) 

- 
A d isp lay  of r3 and A ( 3 )  

a r e  d i s t r ibu ted  among wave numbers o r  eddy s i zes ,  s ince  

shows how the  contr ibut ions t o  3 and T~ 
( 3) 

T U 3  = 
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COMYUTED SPECTRA 
- - 

Numerically calculated spectra of Tu3 and T~ are displayed in di- 
( 3 )  

mensionless form in figures 1 and 2 for several values of the dimensionless ve- 
locity gradient a*. Since time enters all the dimensionless representations, 
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(a) Prandtl number, 1. 

velocity and temperature gradients and for various Prandtl numbers. 

- 
Figure 1. - Dimensionless spectra of  TU^ and for uni form transverse 

the curves for various a* show the effect of velocity gradient on the spectra 
at any given time while the turbulence decays. Dashed curves correspond to 
those in reference 2 because of separability of solutions. For large Frandtl 
numbers, the spectra of 3 in figure 1 peak at large wave numbers ( s m a l l  
eddy sizes). 

- 
Isotropic spectra (a* = 0) in figure 1 are the same for 'ru3 and 9, 

as previously reported in reference 4. The behavior of the peaks of the spec- 
tra of TiZj and % is similar to that of the respective production terms 
cy33 and bq22 in equations (23) and (24); 022 decreases and shifts toward 
lower wave numbers as the velocity gradient increases, whereas cp33 increases 
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markedly with l i t t l e  shift ( see  fig. 5 of r e f .  5 and f i g .  2 of ref. 7 ) .  

A s h i f t  t o  higher wave numbers In t h e  spec t r a  of 
- 

72 with increas ing  ve- 
. l o c i t y  gradient  i s  evident i n  f igu re  2 bo th  a t  peak and a t  moderate values on 
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(b) Prandtl number, 0.01. 

Figure 1. - Continued. Dimensionless spectra of r$ and '7 for u n i -  
form transverse velocity and temperature gradients and for various Prandtl 
numbers. 

t h e  high wave number side; t he  s h i f t  r e s u l t s  i n  an elongation of t he  spec t ra  to -  
ward high wave numbers. 
a c t i v i t y  from low wave nmfbers ( l a rge  eddies) t o  high wave numbers (small 
eddies) by t h e  ac t ion  of t h e  second term i n  equation (25), which i s  known as 
t h e  t r a n s f e r  term. 

This spec t r a l  change i s  evident ly  due t o  a t r ans fe r  of 

The name stems f r o m t h e  Fourier transform r e l a t i o n  
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which becomes, f o r  r = 0, 

'i 

Similar r e s u l t s  can be obtained from corresponding terms i n  equations (23)  
and (24 ) .  
&'/at, 

Thus, these  terms contr ibute  nothing t o  
bu t  they  do a l t e r  s p e c t r a l  d i s t r ibu t ions .  

a c d a t ,  a q / a t ,  and - 

The in tegra t ion  shown i n  equation (33) can be accomplished i n  two s teps  by 

(c) Prandtl number, 10. 

Figure 1. - Concluded. Dimensionless spectra of G3 and TY~ for uni- 
form transverse velocity and temperature gradients and for various Prandtl 
numbers. 
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Figure 2. - Dimensionless spectra ofT2 andZ2  for uniform transverse velocity and temperature 
gradients. Prandtl number, 1. (3) 

first in t eg ra t ing  over t h e  angular coordinates of a wave number sphere and then 
in t eg ra t ing  over t h e  wave numbers. Of course, t h e  second s t e p  y ie lds  a t r i v i a l  
r e s u l t ,  b u t  t he  f i rs t  r e s u l t  i s  &spectral  transfer function, 
t r a n s f e r  term corresponding t o  .t2 
of 1. Most of t h e  t r a n s f e r  of a c t i v i t y  i s  out of t h e  low wave number spectrum 
and i n t o  t h e  high wave number spectrum, bu t  some reverse  t r a n s f e r  occurs a t  low 
wave numbers and l o w  ve loc i ty  gradients.  In  reference 2 t h i s  a c t i v i t y  t r a n s f e r  
was a t t r i b u t e d  t o  a vortex-st retching process, which might also involve vortex 
compression a t  low ve loc i ty  gradients  and thereby produce some reverse t r ans -  
f e r .  

The in tegra ted  
i s  shown i n  figure 3 f o r  a Prandt l  number 

PRODUCTION , TEMPERATLTRE FLUC WATI ON, 

AND CONDUCTION SPECTRA 

Production of temperature f luc tua t ions  by the  t h i r d  and the  fou r th  terms 
i n  equation ( 2 5 )  i s  in te rpre ted  as a r e s u l t  of t h e  ac t ion  of the  temperature 
gradient  on the  respect ive turbulen t  heat  t r ans fe r ,  ‘ruz and ~ u g .  Conduction 
o r  d i s s ipa t ion  i n  the l a s t  term reduces l o c a l  temperature peaks by molecular 
hea t  conduction away from hot spots. Production and conduction terms can be 
in tegra ted  over a wave number sphere t o  y i e ld  s p e c t r a l  d i s t r ibu t ions  i n  the- 
same manner as t h a t  used t o  obtain t h e  temperature f luc tua t ion  spec t ra  of 72 
i n  f igu re  2. A f t e r  normalization of t he  peak values t o  unity,  a l l  th ree  spec- 
t r a  a re  shown i n  figure 4 f o r  a Prandt l  number of 1 and a high ve loc i ty  gradient  

- - 
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Figure 3. - Dimensionless spectra of transfer terms in spectral equations for T2 and T2 Prandtl 

number, 1. ( 3) (2) . 

0 .4  .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 
K *  - v q t  - t o p ,  

Figure 4. - Comparison of production, temperature fluctuation, and conduction spectra from spectral 
_ _ -  

equations for t2 and T2 
Prandtl number, 1. a* = (t -to) dUlldx2 = 50. (Curves normalized to same height.) 

(solid and dashed curves, respectively) at large velocity gradient. 
( 3) ( 2) 
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(a* = 50). 
of aT/axg and aT/axz (from ref, 2) are displayed in figure 4. For low ve- 
loclty gradients, the three spectra are close together, like those in fig- 
ure 4 of reference 2. For a large velocity gradient, production, fluctuation, 
and conduction spectra in the present figure 4 peak at successively greater 
wave numbers. 

Actually, two sets of spectra corresponding to the separate effects 

All these effects take place as the turbulence and the turbulent tempera- 
ture fluctuations decay. 
wave numbers), transferred to the small eddies (high wave numbers), and finally 
dissipated by molecular conduction. 

Fluctuations are produced in the large eddies (low 

L 0 

N 
A 
-.-. 

-2 IN&- = 
F 

I \ -.7k \ 
\ 

from ref. 2 

I \ 

-2 
-- -dl , I -':'---- --- 

I , 7--7--J -. 5 I 
40 50 0 10 M 30 

ad = (t -to) dUl/dx2 

Figure 5. - Temperature-velocity correlation coefficients as a function of dimensionless velocity gradient. 
Prandtl number, 1. 

TEMPERATURE-VELOCITY CORRELATION COEFFICIENT 

A temperature-velocity correlation coefficient introduced in reference 3 
is modified herein to account for the separate effects of aT/axz and aT/axg. 
Two dimensionless coefficients are utilized, 

and 
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the former being the same as that presented in reference 2. The latter coef- 
ficient has been calculated from integrals of the curves in figures 1 and 2 and 
those in figure 2 of reference 7, all for a Prandtl number of 1. Figure 5 is 
a display of both correlations as a function of velocity gradient, starting 
with the perfect correlation value of -1 that was obtained in reference 4 for 
isotropic turbulence (a* = 0 ) .  One correlation coefficient - 

TU3 

achieves an asymptotic value of -0.9, whereas the other, by decreasing mono- 
tonically, shows a continuous Loss of correlation between the temperature and 
velocity fluctuations as a* increases, 
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Figure 6. - Ratio of eddy diffusivity for heat transfer to that for momentum transfer 
as a function of dimensionless velocity gradient. 

EDDY DIFFUSIVLTIES 

The eddy diffusivities of momentum and heat (in the x2- and xg-directions) 
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J 
Ratios of eddy d i f f u s i v i t i e s  play a l a rge  p a r t  i n  phenomenological theor ies  of 
steady turbulen t  f lows .  A un i ty  value of Eh(2)/E produces t h e  b e s t  agreement 
between experiment and ana lys i s  for  Prandtlnumbers t h a t  a r e  not  t oo  l o w  
( r e f .  1). I n  t h e  transient turbulence analysis  of reference 2, a s i m i l a r  ten-  
dency of fh(2)/E toward u n i t y  i s  obtained a t  high values of a*, which cor- 
respond roughly t o  s teady  turbulen t  f lows,  Recent phenomenological analyses 
( r e f s .  9 and 10) of c i rcumferent ia l  var ia t ions  of hea t  t r a n s f e r  i n  round tubes 
a r e  based on an assumption of equal eddy d i f f u s i v i t i e s  i n  t h e  r a d i a l  and the  
circumferent ia l  direct ions;  t h a t  is ,  Eh(2) = Eh(3) i n  the  present notation. 

A dimensionless eddy d i f fus iv i ty  v 5 / 2 ( t  - to)3/2 ~ h ( 3 ) / J o  can be ob- 
ta ined  by in tegra t ing  t h e  curves i n  f igure  1. In tegra t ion  of  t h e  curves i n  
reference 5 f o r  E i s  a l s o  necessary f o r  t he  ca lcu la t ion  of  Eh( 3 ) / ~ ,  which is 
displayed i n  f igu re  6 along with Eh(z)/E from reference 2. Although t h e  
curves f o r  the  t w o  r a t i o s  a r e  not widely separated a t  low ve loc i ty  gradients,  
which a r e  near t he  i so t rop ic  case (a* = 0),  la rge  ve loc i ty  gradients  produce 
values of 
Eh( Z) /E,  except f o r  low Prandt l  numbers. 

Eh( 3 ) / E  t h a t  a r e  t w o  Orders of magnitude grea te r  than values of 

The r e l a t i v e  magnitudes of Eh(3) and 
magnitudes of t he  turbulen t  ve loc i ty  f luc tua t ions  (o r  tu rbulen t  energy compo- 
nents) i n  the  t w o  d i rec t ions  u$ and uz. References 5 and 7 show t h a t  7 2 
proceeds r ap id ly  b u t  asymptotically toward zero a t  la rge  ve loc i ty  gradients ,  
whereas 
uiui/3, which increases  with ve loc i ty  gradient. 
soning, it i s  c l ea r  t h a t  t h e  thermal eddy d i f f u s i v i t y  i s  g rea t e r  i n  t h e  direc-  
t i o n  of grea te r  ve loc i ty  f luc tua t ions .  

Eh(2) can be compared with the  

- - 

- 
ug decreases slowly from the  average of t h e  energy components - 

Likewise, from physical  rea- 

- - 
2 The existence of g rea t e r  u3 than uz has long been suspected ( r e f .  11) 

and, i n  recent  times, has been ve r i f i ed  experimentally i n  tube and channel flow 
( r e f s .  1 2  and 13) and i n  boundary layers  ( re f .  14). 
a l l  th ree  components of tu rbulen t  energy, from l a r g e s t  t o  smallest ,  i s  t h e  same 

I n  f a c t ,  t h e  ordering of 

- c -  

(u:, u;, ug) i n  those measurements and i n  t h e  present theory (ref,7) a t  la rge  

ve loc i ty  gradients.  Apparently, not a l l  fea tures  of boundary layers  and tube 
flow depend on t h e  presence of boundaries. 
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The t r a n s i e n t  ana lys i s  w a s  compared i n  reference 2 with a steady flow i n  a 
from turbulen t  energy s p e c t r a l  curves boundary l aye r  o r  tube by  tak ing  8 - 1 

and 0.3 6 as a representa t ive  length, where 6 i s  t h e  boundary-layer t h i ck -  
ness or  t h e  tube radius, If U i s  an average ve loc i ty  and dUl/dx~ - U/6, 
then  a* i s  of t h e  order of 0.1 U6/v. This implies t h a t  ‘h(3)/€ i s  much 
l a r g e r  than 
i n  prac t ice ,  

Eh(2)/E f o r  Reynolds numbers of lo4 and over t h a t  a r e  encountered 

The r e s u l t s  of t h e  present ana lys i s ,  together with e x i s t i n g  ve loc i ty-  
f l uc tua t ion  measurements, provide no support f o r  an assumption of equal thermal 
eddy d i f f u s i v i t i e s  i n  t h e  r a d i a l  and t h e  circumferential  d i r ec t ions  
(‘h(2) = ‘h(3)) i n  tu rbulen t  tube flow. 
i s  indicated,  

Instead, t h e  r e l a t i o n  Eh(3) > Eh(2) 
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